/ 数据结构和算法

一步一步写算法之查找

无论是数据库,还是普通的ERP系统,查找功能数据处理的一个基本功能。数据查找并不复杂,但是如何实现数据又快又好地查找呢?前人在实践中积累的一些方法,值得我们好好学些一下。我们假定查找的数据唯一存在,数组中没有重复的数据存在。

  1. 普通的数据查找

设想有一个1M的数据,我们如何在里面找到我们想要的那个数据。此时数据本身没有特征,所以我们需要的那个数据可能出现在数组的各个位置,可能在数据的开头位置,也可能在数据的结束位置。这种性质要求我们必须对数据进行遍历之后才能获取到对应的数据。

int find(int array[], int  length, int value)  
{  
  if(NULL == array || 0 == length)  
      return -1;  

    for(int index = 0; index < length; index++){  
       if(value == array[index])  
          return index;  
      }  

   return -1;  
}  

分析
由于我们不清楚这个数据判断究竟需要多少次。但是,我们知道,这样一个数据查找最少需要1次,那么最多需要n次,平均下来可以看成是(1+n)/2,差不多是n的一半。我们把这种比较次数和n成正比的算法复杂度记为o(n)。
2. 上面的数据没有任何特征,这导致我们的数据排列地杂乱无章。试想一下,如果数据排列地非常整齐,那结果会是什么样的呢?就像在生活中,如果平时不注意收拾整齐,那么找东西的时候非常麻烦,效率很低;但是一旦东西放的位置固定下来,所有东西都归类放好,那么结果就不一样了,我们就会形成思维定势,这样查找东西的效率就会非常高。那么,对一个有序的数组,我们应该怎么查找呢?二分法就是最好的方法。

int binary_sort(int array[], int length, int value)  
{  
    if(NULL == array || 0 == length)  
        return -1;  

    int start = 0;  
    int end = length -1;  

    while(start <= end){  
      
         int middle = start + ((end - start) >> 1);  
         if(value == array[middle])  
            return middle;  
          else if(value > array[middle]){  
             start = middle + 1;  
          }else{  
              end = middle -1;  
          }  
    }  

    return -1;  
}  

分析:
上面我们说到普通的数据查找算法复杂度是o(n)。那么我们可以用上面一样的方法判断一下算法复杂度。这种方法最少是1次,那么最多需要多少次呢?我们发现最多需要log(n+1)/log(2)即可。大家可以找个例子自己算一下,比如说7个数据,我们发现最多3次;如果是15个数据呢,那么最多4次;以此类推,详细的论证方法可以在《算法导论》、《计算机编程艺术》中找到。明显,这种数据查找的效率要比前面的查找方法高很多。
3. 上面的查找是建立在连续内存基础之上的,那么如果是指针类型的数据呢?怎么办呢?那么就需要引入排序二叉树了。排序二叉树的定义很简单:

  • 非叶子节点至少一边的分支非NULL;
  • 叶子节点左右分支都为NULL;
  • 每一个节点记录一个数据,同时左分支的数据都小于右分支的数据。

可以看看下面的定义:

typedef struct _NODE  
{  
     int data;  
     struct _NODE* left;  
     struct _NODE* right;  
}NODE;  

那么查找呢,那就更简单了。

const NODE* find_data(const NODE* pNode, int data){  
    if(NULL == pNode)  
       return NULL;  

     if(data == pNode->data)  
         return pNode;  
     else if(data < pNode->data)  
         return find_data(pNode->left, data);  
     else  
         return find_data(pNode->right, data);          
}  
  1. 同样,我们看到2、3都是建立在完全排序的基础之上,那么有没有建立在折中基础之上的查找呢?有,那就是哈希表。哈希表的定义如下:
  • 每个数据按照某种聚类运算归到某一大类,然后所有数据链成一个链表;
  • 所有链表的头指针形成一个指针数组。这种方法因为不需要完整排序,所以在处理中等规模数据的时候很有效。

其中节点的定义如下:

typedef struct _LINK_NODE  
{  
    int data;  
    struct _LINK_NODE* next;  
}LINK_NODE;

那么hash表下面的数据怎么查找呢?

LINK_NODE* hash_find(LINK_NODE* array[], int mod, int data)  
{  
    int index = data % mod;  
    if(NULL == array[index])  
       return NULL;  

    LINK_NODE* pLinkNode = array[index];  
    while(pLinkNode){  
        if(data == pLinkNode->data)  
            return pLinkNode;  
        pLinkNode = pLinkNode->next;  
    }  

    return pLinkNode;  
} 

分析:
hash表因为不需要排序,只进行简单的归类,在数据查找的时候特别方便。查找时间的大小取决于mod的大小。mod越小,那么hash查找就越接近于普通查找;那么hash越大呢,那么hash一次查找成功的概率就大大增加。

声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com